发布于 4年前
二叉树的中序遍历
中序遍历
中序遍历首先遍历左子树,然后访问根结点,最后遍历右子树。在遍历左、右子树时,仍然先遍历左子树,再访问根结点,最后遍历右子树。
R
/
A B
/ /
C D E F
上面这个树的中序遍历顺序是: C A D R E B F
遍历的实现
- 递归实现
- 迭代实现
递归实现
public class {
public static Tree init() {
Tree E = new Tree(null, null, "E");
Tree F = new Tree(null, null, "F");
Tree C = new Tree(null, null, "C");
Tree D = new Tree(null, null, "D");
Tree A = new Tree(C, D, "A");
Tree B = new Tree(E, F, "B");
Tree root = new Tree(A, B, "R");
return root;
}
public static void main(String[] args) {
Tree root = init();
traverse(root);
}
private static void traverse(Tree root) {
if(root == null) {
return;
}
traverse(root.getLeft());
System.out.print(root.getData() + " ");
traverse(root.getRight());
}
}
迭代实现
如下图所示:
import java.util.Stack;
public class InTraverse1 {
public static Tree init() {
Tree E = new Tree(null, null, "E");
Tree F = new Tree(null, null, "F");
Tree C = new Tree(null, null, "C");
Tree D = new Tree(null, null, "D");
Tree A = new Tree(C, D, "A");
Tree B = new Tree(E, F, "B");
Tree root = new Tree(A, B, "R");
return root;
}
public static void main(String[] args) {
Tree root = init();
traverse(root);
}
private static void traverse(Tree root) {
Stack<Tree> stack = new Stack<>();
while (true) {
findLeft(root, stack);
if (stack.isEmpty()) {
break;
}
Tree popTree = stack.pop();
//访问栈顶的节点,也就是最左的节点
System.out.print(popTree.getData() + " ");
//然后循环遍历右子树
root = popTree.getRight();
}
}
//沿着当前节点,把所有的左节点push到栈中
private static void findLeft(Tree root, Stack<Tree> stack) {
while (root != null) {
stack.push(root);
root = root.getLeft();
}
}
}